Linker mutagenesis of a bacterial fatty acid transport protein. Identification of domains with functional importance.

نویسندگان

  • G B Kumar
  • P N Black
چکیده

The product of the fadL gene (FadL) of Escherichia coli is a multifunctional integral outer-membrane protein required for the specific binding and transport of exogenous long-chain fatty acids [C12-C18]. FadL also serves as a receptor for the bacteriophage T2. In order to define regions of functional importance within FadL, the fadL gene has been mutagenized by the insertion of single-stranded hexameric linkers into the unique SalI restriction site that lies towards the 3' end of the gene and into four HpaII restriction sites distributed throughout the coding region. The five insertion mutants were classified into three groups based on their specific growth rates (alpha) in minimal media containing the long-chain fatty acid oleate (C18:1) as a sole carbon and energy source: Oleslow, alpha = 0.035-0.045; Ole +/-, alpha = 0.020-0.035; and Ole-, alpha less than or equal to 0.005 (wild-type, alpha = 0.07-0.10). The hexameric insertion at the SalI site (fadL allele termed S1; insertion after amino acid 410) conferred an Oleslow phenotype and resulted in a reduction of long-chain fatty acid transport (36% the wild-type level). This insertion mutant, however, bound oleic acid at wild-type levels and was fully functional as a receptor for the bacteriophage T2. The modified FadL-S1 protein did not have the heat-modifiable property characteristic of wild-type FadL. Insertions in the four HpaII sites (fadL alleles termed H1, H2, H3, and H5; after amino acids 41, 81, 238, and 389, respectively) resulted in all three classes of mutants. The fadL insertion mutant H5 was defective for long-chain fatty acid transport but bound oleic acid at significant levels. Together with the S1 allele, these data suggest that the carboxyl terminus of FadL is crucial for long-chain fatty acid transport. The insertion mutants H1 and H2 were defective for both oleic acid binding and transport suggesting that the amino terminus of FadL is important for long-chain fatty acid binding and transport. The fadL linker mutant H3 was defective in oleic acid binding yet had significant levels of oleic acid transport. These studies delineated for the first time different regions of the fadL gene that encode domains of FadL implicated in the binding and transport of long-chain fatty acids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...

متن کامل

Identification by site-directed mutagenesis of three arginines in uncoupling protein that are essential for nucleotide binding and inhibition.

Primary regulation of uncoupling protein is mediated by purine nucleotides, which bind to the protein and allosterically inhibit fatty acid-induced proton transport. To gain increased understanding of nucleotide regulation, we evaluated the role of basic amino acid residues using site-directed mutagenesis. Mutant and wild-type proteins were expressed in yeast, purified, and reconstituted into l...

متن کامل

The chemical composition, fatty acid and amino acid Profiles of the Muscle Tissue of Male and Female Liza aurata in the Caspian Sea, Iran

Abstract The present study aims at the identification and investigation of fatty acid and amino acid profiles in male and female Liza aurata in the southern part of the Caspian Sea, in reproductive (autumn) and non-reproductive (spring) seasons. The results showed difference between the total fatty acids levels in the sexes. Analyses of fatty acids indicated a higher percentage of C16:0, C...

متن کامل

اثرات متقابل کادمیوم و pH محیط بر جذب روده‌ای اسیدهای چرب در رت

Background: The intestinal absorption of fatty acids may take place through simple diffusion as well as through protein carrier mediated transport, although the relative importance of each pathway is dependent on the ambient condition of entrocytes. Cad-mium ion influences the absorption of fatty acids in entrocytes. However, the effect of cadmium ion on the absorption of fatty acids in differe...

متن کامل

Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains.

In Escherichia coli, fatty acid synthesis and degradation are coordinately controlled at the level of transcription by FadR. FadR represses transcription of at least eight genes required for fatty acid transport and beta-oxidation and activates transcription of at least two genes required for unsaturated fatty acid biosynthesis and the gene encoding the transcriptional regulator of the aceBAK o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 2  شماره 

صفحات  -

تاریخ انتشار 1991